Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Añadir filtros

Base de datos
Tópicos
Tipo del documento
Intervalo de año
1.
Lancet Microbe ; 2023 Jun 09.
Artículo en Inglés | MEDLINE | ID: covidwho-20245381

RESUMEN

BACKGROUND: Effectively implementing strategies to curb SARS-CoV-2 transmission requires understanding who is contagious and when. Although viral load on upper respiratory swabs has commonly been used to infer contagiousness, measuring viral emissions might be more accurate to indicate the chance of onward transmission and identify likely routes. We aimed to correlate viral emissions, viral load in the upper respiratory tract, and symptoms, longitudinally, in participants who were experimentally infected with SARS-CoV-2. METHODS: In this phase 1, open label, first-in-human SARS-CoV-2 experimental infection study at quarantine unit at the Royal Free London NHS Foundation Trust, London, UK, healthy adults aged 18-30 years who were unvaccinated for SARS-CoV-2, not previously known to have been infected with SARS-CoV-2, and seronegative at screening were recruited. Participants were inoculated with 10 50% tissue culture infectious dose of pre-alpha wild-type SARS-CoV-2 (Asp614Gly) by intranasal drops and remained in individual negative pressure rooms for a minimum of 14 days. Nose and throat swabs were collected daily. Emissions were collected daily from the air (using a Coriolis µ air sampler and directly into facemasks) and the surrounding environment (via surface and hand swabs). All samples were collected by researchers, and tested by using PCR, plaque assay, or lateral flow antigen test. Symptom scores were collected using self-reported symptom diaries three times daily. The study is registered with ClinicalTrials.gov, NCT04865237. FINDINGS: Between March 6 and July 8, 2021, 36 participants (ten female and 26 male) were recruited and 18 (53%) of 34 participants became infected, resulting in protracted high viral loads in the nose and throat following a short incubation period, with mild-to-moderate symptoms. Two participants were excluded from the per-protocol analysis owing to seroconversion between screening and inoculation, identified post hoc. Viral RNA was detected in 63 (25%) of 252 Coriolis air samples from 16 participants, 109 (43%) of 252 mask samples from 17 participants, 67 (27%) of 252 hand swabs from 16 participants, and 371 (29%) of 1260 surface swabs from 18 participants. Viable SARS-CoV-2 was collected from breath captured in 16 masks and from 13 surfaces, including four small frequently touched surfaces and nine larger surfaces where airborne virus could deposit. Viral emissions correlated more strongly with viral load in nasal swabs than throat swabs. Two individuals emitted 86% of airborne virus, and the majority of airborne virus collected was released on 3 days. Individuals who reported the highest total symptom scores were not those who emitted most virus. Very few emissions occurred before the first reported symptom (7%) and hardly any before the first positive lateral flow antigen test (2%). INTERPRETATION: After controlled experimental inoculation, the timing, extent, and routes of viral emissions was heterogeneous. We observed that a minority of participants were high airborne virus emitters, giving support to the notion of superspreading individuals or events. Our data implicates the nose as the most important source of emissions. Frequent self-testing coupled with isolation upon awareness of first symptoms could reduce onward transmissions. FUNDING: UK Vaccine Taskforce of the Department for Business, Energy and Industrial Strategy of Her Majesty's Government.

2.
Nat Med ; 28(5): 1031-1041, 2022 05.
Artículo en Inglés | MEDLINE | ID: covidwho-1773989

RESUMEN

Since its emergence in 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused hundreds of millions of cases and continues to circulate globally. To establish a novel SARS-CoV-2 human challenge model that enables controlled investigation of pathogenesis, correlates of protection and efficacy testing of forthcoming interventions, 36 volunteers aged 18-29 years without evidence of previous infection or vaccination were inoculated with 10 TCID50 of a wild-type virus (SARS-CoV-2/human/GBR/484861/2020) intranasally in an open-label, non-randomized study (ClinicalTrials.gov identifier NCT04865237 ; funder, UK Vaccine Taskforce). After inoculation, participants were housed in a high-containment quarantine unit, with 24-hour close medical monitoring and full access to higher-level clinical care. The study's primary objective was to identify an inoculum dose that induced well-tolerated infection in more than 50% of participants, with secondary objectives to assess virus and symptom kinetics during infection. All pre-specified primary and secondary objectives were met. Two participants were excluded from the per-protocol analysis owing to seroconversion between screening and inoculation, identified post hoc. Eighteen (~53%) participants became infected, with viral load (VL) rising steeply and peaking at ~5 days after inoculation. Virus was first detected in the throat but rose to significantly higher levels in the nose, peaking at ~8.87 log10 copies per milliliter (median, 95% confidence interval (8.41, 9.53)). Viable virus was recoverable from the nose up to ~10 days after inoculation, on average. There were no serious adverse events. Mild-to-moderate symptoms were reported by 16 (89%) infected participants, beginning 2-4 days after inoculation, whereas two (11%) participants remained asymptomatic (no reportable symptoms). Anosmia or dysosmia developed more slowly in 15 (83%) participants. No quantitative correlation was noted between VL and symptoms, with high VLs present even in asymptomatic infection. All infected individuals developed serum spike-specific IgG and neutralizing antibodies. Results from lateral flow tests were strongly associated with viable virus, and modeling showed that twice-weekly rapid antigen tests could diagnose infection before 70-80% of viable virus had been generated. Thus, with detailed characterization and safety analysis of this first SARS-CoV-2 human challenge study in young adults, viral kinetics over the course of primary infection with SARS-CoV-2 were established, with implications for public health recommendations and strategies to affect SARS-CoV-2 transmission. Future studies will identify the immune factors associated with protection in those participants who did not develop infection or symptoms and define the effect of prior immunity and viral variation on clinical outcome.


Asunto(s)
COVID-19 , SARS-CoV-2 , Anticuerpos Antivirales , Humanos , Cinética , Resultado del Tratamiento , Carga Viral , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA